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Abstract

We present three methods for extending the Implicit Monte Carlo (IMC) method to treat the time-evolution of coupled
radiation, electron, and ion energies. The first method splits the ion and electron coupling and conduction from the stan-
dard IMC radiation-transport process. The second method recasts the IMC equations such that part of the coupling is
treated during the Monte Carlo calculation. The third method treats all of the coupling and conduction in the Monte Carlo
simulation. We apply modified equation analysis (MEA) to simplified forms of each method that neglects the errors in the
conduction terms. Through MEA we show that the third method is theoretically the most accurate. We demonstrate the
effectiveness of each method on a series of 0-dimensional, nonlinear benchmark problems where the accuracy of the third
method is shown to be up to ten times greater than the other coupling methods for selected calculations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The simulation of thermal radiation propagation ranks among the most difficult class of transport prob-
lems. These problems are highly nonlinear, and the fundamental unknown (the radiation intensity) can be
a function of seven independent variables (in 3D). One of the most successful and widely used methods in ther-
mal radiation transport is Implicit Monte Carlo (IMC) [1]. This method is a two-temperature (2T) scheme that
includes radiation and material coupling where the matter is represented by a single temperature.

A more accurate description of the radiation and material coupling represents the ions and electrons by
distinct, separate temperatures [2]. The resulting three-temperature (3T) equations for the time evolution of
the radiation, electron, and ion energies include terms representing electron—ion coupling and conduction
[3]. Conventionally, this system of equations is solved using radiation diffusion with operator-split conduction
and coupling [4]. Fully nonlinear solutions using radiation diffusion have been shown in Ref. [2].
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The objective of this paper is to extend the standard, grey IMC method to include 3T physics. Descriptions
of matter that include separate energies for electrons and ions are important in high energy density physics
applications and astrophysics [5]. The first part of this paper will describe the 3T energy-evolution equations,
as these are not common in much of the existing radiation transport literature. Next, we derive three methods
for solving the 3T equations using IMC. These are presented in 3D, frequency-integrated form.

The first method uses the standard IMC technique to simulate radiation transport. The conduction and cou-
pling terms are linearized and split into separate equations that are solved independently. A second method uses
a more robust splitting scheme in which half of the coupling is treated during the transport simulation. The con-
duction is split from the ion and electron equations and is solved subsequently. Afterward, the second half of the
coupling is solved. The third method treats the conduction explicitly and includes all of the conduction and cou-
pling in the linearization of the transport equation. This is a good approximation when the conduction time-
scales are much longer than the radiation-transport timescales. We expect this to be the case for most
problems because the conduction timescales are related to the electron thermal velocity whereas the radiation
moves at the speed of light. The resulting system has three equations: a Monte Carlo transport equation and
two decoupled energy equations for electrons and ions.

In the next part of the paper, we provide an analytical framework for determining which method performs
best through modified equation analysis (MEA). MEA has been shown to be a useful technique for determin-
ing the errors that result from splitting and linearization methods [6,7]. In MEA we formulate the continuous
system of equations from the discretized system using Taylor series expansions. The resulting system of equa-
tions gives the continuous system plus the error terms that are imposed by a particular splitting or lineariza-
tion strategy. This modified system of equations can then be solved using an unsplit, nonlinear method to
evaluate the error terms imposed by the discrete method. Newton iteration is commonly used to solve the
unsplit systems of nonlinear equations [7].

We perform MEA on a simplified, space-independent version of the IMC equations. The validity of this
approach is justified on the grounds that all of the methods will have identical error terms associated with
the spatial treatment of the radiation. Furthermore, the spatial behavior of Monte Carlo methods is well-
understood, although IMC has more complexity then linear Monte Carlo transport simulations due to spatial
discretizations of the material temperature that can result in severe boundary-layer effects at wave fronts and
material interfaces. Thus, the MEA provides a useful mechanism for analyzing the linearization and splitting
errors that are different in each of the proposed IMC methods.

Naturally, the 0-dimensional nature of the analysis means that we neglect splitting errors due to conduc-
tion. Conduction is neglected from the analysis because of the complexities that are involved in performing
MEA on angular and space-dependent transport equations. Based on the results of the analysis, we can infer
that additional splits will add error. Therefore, the analysis is still valid for predicting trends even though the
absolute magnitude of the errors will change when conduction is included. We will undertake a qualitative
analysis of conduction errors in a future paper.

Finally, we validate the results of the MEA by performing a series of calculations with varying initial data.
These calculations are performed on space-independent forms of the IMC equations. For similar reasons as
stated above, these calculations provide justification for choosing a particular method based upon problem
specification.

This paper will formulate and analyze three methods for incorporating 3T physics into an IMC simulation.
In Section 2 we describe the governing equations in the 3T model. Section 3 shows derivations of the three
IMC methods that solve the 3T equations. We perform MEA on simplified, space-independent versions of
the IMC equations in Sections 4 and 5. We will examine the effects of linear and nonlinear material data in
Section 6. Our conclusions are presented in Section 7.

2. 3T Model

We use a 3T model that includes electron—ion coupling and conduction. Electromagnetic effects are not
considered. The radiation transport is split from any associated hydrodynamics effects. Thus, errors that result
from splitting the radiation from the hydrodynamics are neglected. We include ion conduction as shown in
Ref. [3]. The 3T system consists of radiation, electron, and ion energy equations [2,3]:
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Here, we define the state variables and source terms as
radiation intensity ¥ = y(x,Q,v,7) [GJem 2 ns~' keV ™' str!],
internal energy e, = e,(x,T,?) [GJ cm™],
temperature 7, = T,(x,t) [keV],
source Q, = Q,(x,1) [GJem™ ns™'],

where o = ¢,1 for electrons and ions, and v is expressed in units of /v [keV]. The independent variables are x,
Q, v, and ¢ for space, angle, frequency, and time. The speed of light is ¢ = 29.979 cm ns ™.

The temperature is a function of internal energy through the equation-of-state (EOS) relationship:

de
T 4
dr,’ 4)

where C,, — pC,, is the specific heat of ions and electrons at constant density and has units of
GJ ecm *keV ™. For convenience, we have folded the density into the definition of C,, although this is not
normal practice because density varies during a radiation-hydrodynamics calculation. The conduction terms
are defined by thermal diffusion coefficients, D, = D,(x, T,) [GJ cm™! ns™! keV’l], that are, in general, nonlin-
ear functions of temperature. The ion-electron coupling timescale is defined by the collisional time,
T =1(x,T.) [ns] [3],

Cvoc =

T3/2
=1.08782 x 10" —=—. 5
T X o (5)

Here, 4 is the Coulomb wavelength between electrons and ions and is generally in the range 10 < A < 20, and n
is the number density. We note that 4 can also be defined by models with 7; dependence. The radiation—elec-
tron equilibration timescale is (o¢)~!, where ¢ = a(x,v,T) [em™'] is the opacity

This model is valid in the local thermodynamic equilibrium (LTE) limit in which the emission of radiation
can be described by the Planck function, B = B(v, T.), and

1
/B(v, T.)dv= %acT;‘, (6)

where a = 0.01372 GJ cm ™ keV* is the radiation constant. The spectral radiation energy density is the zeroth
angular moment of the radiation intensity,

E(x,v,1) :é U(x,Q,v,t)dQ. (7)

4n

We define the radiation temperature, 7}, in a manner that is consistent with the LTE approximation by assum-
ing that the radiation intensity can be described by a Planckian at T,

1
E(x,f) = /E(x, v, £)dv ~ & //B(v, T,)dQdv = aT*. (8)
c
In all of the work that follows we shall use the grey approximation where

U= Y(x,Q,1) = /W(X,Q, v, 1)dv,
c=a(x,T).
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Operating on Eq. (1) by [(-)dv and using the preceding definitions, we derive the following coupled set of
equations describing the time evolution of radiation, electron, and ion energy,

1 1
al//+9 th—i—mp——(ch4 9)
c Ot 4n
6@6 C 4
o =V DVTe+ = (T T.) + /m//dﬂ—(che+Qe, (10)
aei Cve
e Ti—Te ;- 11
5 = ( )+ 0 (11)

We note that [ oy dQ = ocE; however, this term is left in integral form for reasons that will become clear in
Section 3.

3. 3T IMC Methods

The objective is to define IMC methods that can be used to solve the system of equations in (9)—(11). The
standard IMC method [1] solves a 2T version of the model by linearizing the system through the transform
de  Cy 0 1 ¢—¢"

_Ni_f\/_

ot 4a(7")3 o B At

where ¢ = aT*. This expression and the material-energy equation are used to develop a function for ¢ that
linearizes the emission source term. The resulting IMC equations are

, (12)

laal//—FQ Vlﬁ—kalﬁ— f0c¢—|—1— (/ l//dQ—i—Q)} (13)
o1 [via- s+ s (14
where f'is the Fleck factor,
1
S =T Fochi 13)

This system can be solved using standard Monte Carlo where absorption and reemission within a timestep
are approximated by an effective scatter process. Methodologies for simulating Eqs. (13) and (14) are given in
Refs. [1,8].

The principal difficulty when adding electron and ion effects to this scheme is treating the conduction oper-
ator in Eqgs. (10) and (11). One approach is to assume that conduction will operate at slow timescales relative
to the radiation flow so that the conduction operators can be treated explicitly. This approximation will, in
general, be valid because the radiation moves at the speed of light whereas the conduction is a function of
the electron thermal velocity. Also, the magnitude of conduction effects is generally small compared to the
coupling in high energy density physics problems. The method we develop using this approach will be called
the explicit-conduction IMC (ECIMC) method.

The description of propagation of radiation based on the speed of light is not always accurate. In highly
diffusive media the wave-speed that defines the radiation flow can be subsonic. In these cases we may not
be able to treat the conduction explicitly. Therefore, we will have to split the system of equations such that
the resulting conduction equations can be treated implicitly. We will refer to this technique as the split-
conduction IMC (SCIMC) method.

Finally, we can split all of the 3T physics from the standard IMC method. In this case, we solve Eq. (13)
using Monte Carlo and use (14) to get the electron energy at an intermediate time, #*. We then solve split con-
duction and coupling equations to calculate the electron and ion internal energies at "', This method has the
benefit that it can be easily integrated with an existing IMC code. However, this technique adds additional
splits that increase the error, as we shall see in Section 4. This method will be termed the fully-split IMC
(FSIMC) method.
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All of the methods proposed here are written in strong conservation form. In real simulations this requires
inverting the EOS at the end of each timestep to calculate the ion and electron temperatures from internal
energy. This approach is consistent with hydrodynamics schemes, which include an energy equation. It also
guarantees rigorous energy conservation. The drawback is the added cost of inverting tabular EOS in real
calculations.

There are many additional splits that could be applied to this system. As will be shown below, the FSIMC
and SCIMC methods both split the coupling such that half of the coupling is done before the conduction, and
the second half is done afterward. Obviously this choice adds additional splits to these methods. We made this
choice because this splitting scheme has been used in practical, radiation-hydrodynamics calculations employ-
ing diffusion for some time [4]. Also, in problems where conduction is important one would expect the
accuracy to improve if the conduction and electron—ion coupling were treated simultaneously to some degree.
A detailed analysis of the errors that result from different treatments of the conduction relative to the electron—
ion coupling is beyond the scope of this paper.

3.1. ECIMC method

In this scheme we treat the conduction terms in Egs. (10) and (11) explicitly; thus, we avoid the problem of
inverting multiple operators during a solve. This choice makes sense as long as the timescales of the conduc-
tion terms are longer than the timescales of the radiation and coupling terms. The derivation of the method
begins from the following time-discrete forms of Egs. (9)—(11):

16‘//7 O n 1 n, pn+l,
car T RV otedt (o)
e:+1 —e 7 N % n+l _ gntl n _ ocd"t! .

= VDIV (T "N+ [ "YdQ — a"c¢™ + O (17)
n+l n n
AL, A UL e e (18)

Here, ¢""' = a(TZ“)“, and we do not specify the time derivative for i in Eq. (16) because we will evaluate
piecewise-continuously during the timestep using Monte Carlo.

In order to linearize Egs. (16)—(18), we need equations for 7", 77!, and ¢!, Using the definition of C,,
in Eq. (4), we rewrite Eqgs. (17) and (18) with temperature as the dependent variable:

n TZ+1 — T: 7 n C:l/e n+1 n+1 n n , gn+l 1
CVCTZV'DCVTC+T_n(Ti —Tc )+ O'lde—O'C(]s +Q::, (19)
it C!
Chtg = Vo DIVT = e (11 = T 4 0 (20)
-Cn

In these equations we have chosen to evaluate C,., Cy;, 7, and the sources, Q. and Q;, at ¢". Using Eq. (20) to
solve for 77! yields

C. c, 1
Tt =iy et 4 (O + V- DIVTY 21
1 At')) 1 +T”'}) € +V(Q1 + 1 1)’ ( )
with
CVI. CII
y—= vy Zve 22
/ At + T (22)

Substituting 77" into Eq. (19) yields an electron equation that is decoupled from the ion equation,

n+1 n
Te _Tei

e = V- DIVT + S50 + alm !+ / aYdQ —a"cd™! + O, (23)

where
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Cy. (Cu
Sy = (At O+ V- D”VT”) (24)
C” Cy
= e Zve_ 1), 25
T (t”y > (25)

We can apply the transform shown in Eq. (12) to Eq. (17) to write an equation for the time evolution of ¢.
Using Eq. (21) to remove the ion temperature, we derive

1 ¢ﬂ+l ¢n

B At
We have defined two equations for the time evolution of T, and T? in (23) and (26), respectively. Eq. (23) is
used to write an expression for 7"*! as a function of ¢,

SIS 4 [y dQ —a"ed" + O+ V- D”VT”

=V -D'VT" + 8! +aT" + / oY dQ — o"cd" + O (26)

Tt = = (27)
A o

Then, substituting this expression into Eq. (26), one obtains the following linear equation for ¢" "',

" = [(Cl, — aAt)¢" + B ALCI, x (/ c"YydQ+V -DIVT: + 857 +al? + Q’;)}

x {(1+ p'a"cAt)C}, — ocAt}fl. (28)

Now, we substitute d)”“ into Eq. (16) yielding

10 - - _

QT foeg (- 7) [Py - ps) (29)
where we have defined the time-explicit source as

S§'"=V . -DNVT, +oT, + 57 + 0. (30)
Here, the modified form of the standard IMC Fleck factor, f, is defined

_ C' — alt

/= . (31)

(14 B'o"cAt)Ch, — alt”

Eq. (29) is a modified IMC transport equation that includes electron—ion coupling and conduction in the
source term, S”.

We can develop an electron equation that is consistent with Eq. (29) by substituting from Egs. (21), (27),
and (28), respectively, into Eq. (17). Using the definition of f we derive, after some algebraic manipulation,

€:+1 762 C:I/e [f/ﬂnlpdﬂ J}Gn ¢n +fSn:| (32)
= - — C .
At Cy. — alt
Similarly, we can substitute 70", 7"*', and """ into Eq. (18) to develop a modified ion equation,
eﬂ+1 — 7 n 7 n n OCAt 7 n 7 _n n rQn
T Qn+Q:+VDeVTe+VDIVT1—S —mf O'Ikdﬂ—facd) +fS . (33)
ve

Egs. (29), (32), and (33) can be used to solve Egs. (16)—(18) using Monte Carlo simulation. Eq. (29) is a 3T
analog of the standard IMC equation, (13), and it is solved in an identical manner. The Monte Carlo solution
provides estimates of [ ¢”yydQ. These estimates are then used in Egs. (32) and (33) to calculate the end-of-
timestep energies and, through inversion of the EOS defined by (4), temperatures.

We note that the modified Fleck factor, £, has the same limits as the standard IMC Fleck factor, 0 < f < 1
For f > 0, C", — «At must be greater or equal to zero because C” f"¢"cAt > 0. Substituting o and 7, we find
that

T+ A(C + C) = 0.
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Likewise, to show f < 1 we have
Cil, —alt < (1 + f'a"cAt)C, — oAt
Cy p'a"cAt = 0.

Because all of these terms are greater than zero, 0 < f < 1.
Also, when the electrons and ions are uncoupled, * > 0, and

, 1
imf=— .
I = Foear

Thus, Eq. (29) limits to the standard, 2T IMC equation given in (13).
We conclude this derivation by showing that Eqgs. (29), (32), and (33) are conservative. Integrating Eq. (29)
over all angles (it has already been frequency integrated) yields the following balance equation,

OF

(34)

5 +V-F=fd"cd" — fo"cE + (1 — f)S", (35)
where the radiation flux is defined
F = / QydQ. (36)
4n

Adding Eqgs. (35), (32), and (33) yields

OE en+1 v eg’t+l —e"

—+ - ¢+ L=0" '+ V-DIVT!+V -D/VT! —V -F. 37

at + At + At QC + QI + € € + 1 1 ( )
This equation is a correct balance equation that states that the change in the total energy in the system is equal

to the sources minus the amount of energy flow through the system.

3.2. SCIMC method

In this method the conduction operator is split from the electron and ion equations. The resulting system
has three splits. Split I includes half of the electron—ion coupling and solves for the end-of-timestep radiation
intensity and the electron and ion energies at ¢':

é%: —SAZ-lefa"l//+%a”cq§/; (38)

ClETem-)+ [ Fuda- g+ o (39)

e mmeTee (40)
Split IT solves the conduction equations to get the energies at ¢":

eZA—teg _V.D.VT; (41)

e;,A_t “_v. DV (42)

The final split, III, solves the second half of the electron—ion coupling using equations:

+1 "
et —e Cie

YR P (43)
@ = Cu et e
YR = o

Note that in splits IT and IIT we do not specify the time-level of the coefficients D, D;, Cy., and 7. These splits
can be solved nonlinearly using Newton’s method or by linearizing through Eq. (4). We will show results from
both calculations in Section 6.4.
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Splits IT and III were selected in order to preserve the physical coupling between conduction and the elec-
tron—ion coupling. In practice one could solve the conduction equations before or after the complete electron—
ion coupling. This choice is reasonable; however, it neglects the impact that the electron—ion coupling has on
the conduction.

We can formulate a Monte Carlo method to solve split I. The derivation of the equations is analogous to
the procedure used for the ECIMC method in Section 3.1. The resulting system of modified IMC equations
that solves I is

1oy | & LTy ; 5

- a‘fm VYt = {fancqs" +(1 #)/a”wdm (1 f)S”] (45)
/o on c N ~ A

TR T aAr {f / VIRl +fSn]’ -
—— ~ oA ~ > n ron

& =Q§’+Q’;—S"—czeaft&m {f/gnwdg_fancd) Hﬂ' o

These equations are identical in form to Egs. (29), (32), and (33). The differences lie in the modified source
term S”, coefficient &, and Fleck factor f that are defined by

S"=aT!+ 8! + 0L, (48)
. Cne CWI‘!e

_ v ve ] 49
T o (2@ ) (49)
. 1, — At
f= » (50)

(14 p"a"cAt)Ch, — aAt’

The explicit ion source term, §;’ , and 9 are defined,

~ c" "

Sn — ve Vi Tn / 51
i 2‘5"“;)(A[ 1+QT>7 ( )

I Ccl C’\fe

TN e (52)

Also, Eq. (47) has no conduction terms because these have been split off.

Eqgs. (45)—(47) can be used to solve Eqs. (38)—(40) using Monte Carlo simulation. We simulate Eq. (38) with
Monte Carlo in the same way as Eq. (29). Egs. (39) and (40) are solved to get the energies at ¢’. Splits II and III
are then solved to get the final energies and temperatures at """,

This method will be more robust than the ECIMC scheme at large timesteps when the conduction time-
scales are the same order as the radiation timescales. However, the SCIMC method requires two additional
implicit solves for the conduction equations. When the second half of the coupling equations are linearized,
it requires a sweep of the mesh to solve split III. Alternatively, block-Newton iterations can be used; however,
these are more expensive. Also, the additional splits in this scheme impose errors that are not present in
ECIMC as we will show in Section 4.

3.3. FSIMC method

The final 3T Monte Carlo method we will consider is a fully-split scheme. Here, we use standard IMC, see
Egs. (13) and (14), to solve for the radiation intensity and electron energy at ¢*. The rest of the coupling terms
are split and can be solved after the Monte Carlo transport simulation. Effectively, this method is similar to
the SCIMC scheme except we add an additional split to I. Thus, we define split Ia:

10y A S
ng—ﬂ'vwfa!//JrEacd), (53)
b / YR — e + O (54)
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The equations in Ia are identical to the 2T equations that are used to formulate the standard IMC method.
Split Ib adds half of the electron—ion coupling and the ion source:

/ * n
€ — ¢ Ce

= —Ve Tl — T/ N
oSy, (55)
e —éf C, / ! 7
. [URE AR (56)

The next two splits are identical to Eqs. (41), (42) (split II) and Eqs. (43), (44) (split III) from the SCIMC
method.

Split Ia is solved with standard IMC using Eqgs. (13) and (14). Eq. (14) is integrated from e to e, and the
source term is simply the electron source, 0" = Q;. For the FSIMC method, 7= T in Eqgs. (13) and (14).

The principal advantage of the FSIMC method is that it it easily integrated with an existing IMC imple-
mentation. Also, it can be used in problems where the conduction timescales are equivalent to the radiation
timescales. Like the SCIMC scheme, this method requires additional solves for the ion—electron conduction
and coupling equations. It also requires one additional sweep of the mesh to solve for the electron energy
at 1. As in SCIMC, FSIMC adds additional error due to the extra splits in the method when compared to
ECIMC. These errors will be shown in Section 4.

4. Modified equation analysis

Modified equation analysis (MEA) is a useful technique for analyzing time-integration errors that result
from operator splits and linearization. In short, MEA uses Taylor series expansions to bring all variables and
state vectors to the advanced time level for a system of equations. The procedure employed here follows
closely the analysis shown in Ref. [7]. A formal mathematical description of the technique can be found in
Ref. [6].

We will apply MEA to the three IMC schemes that have been proposed to solve Egs. (9)—(11). For simplic-
ity, we will only consider infinite medium solutions. Additionally, we will make the assumption that Ci., Cy;
and 1 are constant. In this case, the material energy is directly related to the temperature through the EOS
relationship,

T
€y = / Cvoch; = CvocTom (57)
0

where o = e, 1 for electrons and ions. Using these assumptions, if we ignore the spatial terms in Eqgs. (9)—(11)
and integrate the transport equation over angle, we have

OE
M + acE = ac, (58a)
T
Cveaa—: = &(Ti —T.) + ocE — ac, (58b)
T

aTi Cve

Ci—=——"(Ti—T. . 58
Lo (-1 4o (580

Note that Q. = 0 in this analysis. Eq. (58) are not written in strong conservation form, and the principal un-
knowns are E, T,, and T;.

By ignoring space dependence in Egs. (58b), (58¢) we neglect to account for conduction effects on the split-
ting and linearization errors. However, including space-dependence and conduction presents several difficul-
ties. First, MEA requires nonlinear-consistent solutions of the modified equations, and we have no good
methods for performing fully nonlinear Monte Carlo calculations. We could employ a deterministic technique
to generate MEA solutions, but nonlinear-consistent, deterministic transport methods are still an active area
of research. Also, conduction is often a small effect for high energy density physics applications. For example,
ion conduction is not even considered in the multi-T fluid approximations used in Ref. [9]. Thus, our analysis
focuses on the errors associated with splitting the ion—electron coupling terms and linearizing the transport
and electron equations.
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When conduction can be neglected in a particular problem, the ECIMC method is the preferred option.
The ECIMC method absent conduction is derived by removing the V- DVT terms from Egs. (24), (30),
and (33). This method has no splits in the radiation solution, and it will be more accurate than simulating
the standard IMC equations followed by an electron—ion coupling solve. In the analysis that follows we will
consider the SCIMC and FSIMC methods with the splits that bound the conduction solve, even though the
conduction splits are not present in the simplified equations. The analysis will show the errors that result from
splitting the electron—ion coupling if conduction were present.

In order to illustrate the MEA procedure, we show the full derivation of the modified equations for the
SCIMC method. Afterward, we will simply write down the modified equations for the ECIMC and FSIMC
schemes. All of the MEA will be applied to the simplified system in Egs. (58a)—(58c).

4.1. Modified SCIMC equations

In analogy to the space-dependent system described in Section 3.2, the SCIMC method is derived from the
following operator-split and discretized form of Egs. (58a)—(58c):

aa—f =d"c(¢' — E); (59)
R R U R AR T Gt (60)
U ARl (61)
% d ;tqb” = gf (T)—T.) +d"c(E - ¢'); (62)
LT Sy, (63)
e, s Seroy, (64)

Here, and in what follows, E, T,, T;, and ¢ written without superscripts indicates a quantity that is evaluated
at "', The simplified SCIMC method that results from these equations is

aa—f + fo"cE = fa"cd" + (1 —]’)g", (65a)
Cye . ;t Te _ CveciveocAt (fo"cE — fo"cd" + f'S"), (65b)
Cvi¥ =0 - S — ﬁ(f'a”cE — fa'cd" +f§”), (65¢)
Cu™ A_t = 2tC,; +CAV;(%; T i T o
e e e | (101 (65¢)

At o ZTCvj + AI(CVI + Cve)

The first three equations are the simplified analog to Egs. (45)—(47). The last two equations solve Eqs. (43),
(44). Because C,., C,;, and t are constant, the second half of the ion—electron coupling is linear and can be
solved by direct substitution.

The SCIMC equations are derived from Eqgs. (59)—(64). In order to form modified equations we need to
bring all state vectors and variables to the advanced time level, 7!, This is achieved via the following Tay-
lor-series expansion,

n . AP 3
g :g—AthrTngO(At), (66)
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where g =¢""! and g and g indicate first and second derivatives with respect to #, respectively. Now, consider
the transport equation in (59) with first-order differencing applied to the time derivative. In a Monte Carlo
simulation we actually do a piecewise-continuous solve of E; however, for the purposes of this analysis we will
consider a first-order solution to E. If we expand all of the ¢ terms we get the following equation,

1 L AP .Y , 3
A E—E+AtE—7E + a—Ata—kTG (cE —c¢') + O(Ar’) = 0. (67)

Here we have a problem because ¢’ is defined at #'. However, we can transform Eq. (63) to find an expression
for ¢’,

1o—¢  Ce
— = T,—T.).
ﬁn A 21_ ( 1 e) (68)
Solving for ¢’ and expanding " we get
¢ =¢— Atp g (T; — T.) + A (é (T; — T.) + O(AP). (69)
T T

Substituting ¢’ into Eq. (67) and moving all first-order terms to the right-hand side, we get the following mod-
ified equation for E,

Cye
27
Analysis of the left-hand side of Eq. (70) shows that it is identical to Eq. (58a). The right-hand side gives the

first-order errors imposed by the linearization and splitting that we have used to solve Egs. (58a)—(58c).
Continuing with our analysis, we now add Egs. (60) and (63) and Egs. (61) and (64) yielding

(Ti — Te) + O(AP). (70)

E+4ac(E—¢) = %E + Atoe(E — ¢) — Atocp

T.—-177 C C
S e S (T T) =2 (T = T.) + 6"c(E — ¢ 1
Coemtt = S (T = T + 52 (T = T0) + "B — §), (1)
T — Tin _ Cve Cve / !
CVI At - 2T (Tl Te) 2T (Tl Te) +Q:l (72)
In order to form modified equations, we need to define 7} and T",. We use Egs. (63) and (64) to write functions
for 7} and 7', evaluated at ¢ as follows,
At
T =T,——(T; - T.), 73
L= TSI =) (73)
At C
T =T +—=2(T,-T,). 74
=ty g T (74)

Using Egs. (69), (73), and (74) for ¢’, T, and T in Eqgs. (71) and (72) and expanding 7 quantities to include
first-order terms and moving all first-order terms to the right-hand side, we get the following modified equa-
tions for the electron temperature,

. Che At . . Cye (Cie
T.——(T;—T —E)=—C, T+ A —F A 1 (T, —T
Cule= (1= T+ oelp - ) = 5 €l ot~ B) + &3 (S5 41 ) 1 10
Cre
+Atoef—=(Ti = Te) + O(AP), (75)
T
and ion temperature,
. Cle . At - . Cye [(Che 2
CuT; + . (T, -T.)— Q, = TCV‘T‘ — AtQ; — At41_2 (Cvi + 1 |(T; — T.) + O(AF). (76)

The left-hand sides of Egs. (75) and (76) are identical to Egs. (58b) and (58c). As in the case of Eq. (70) the
terms on the right-hand sides of Eqs. (75) and (76) are the errors that result from the linearization and splitting
strategy employed in the SCIMC method.
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Egs. (70), (75), and (76) are modified equations that show the errors that result from solving (58a)—(58c)
using Eqgs. (65a)—(65¢). However, the linearization strategy employed in IMC methods uses an additional
equation that describes the time evolution of ¢. These effects must be included in order to accurately account
for all of the errors. We substitute Egs. (69), (73), and (74) into Eq. (62) and expand the ¢, quantities. Keeping
all first-order terms and rearranging by moving all O(A¢) terms to the right-hand side, we obtain the following
modified equation for ¢,

%' _%(ri_n)wc((p—ﬁ*):f%qbwmc(qb E)+ At Ve(g‘:ﬂ)(ﬂ—ﬂ)
B Cue B
. (Ti—Te)+AtB

ac(¢ — E) + O(AP).

(77)

This equation has no direct analog in Egs. (58a)—(58c); however, it does give the error that results from using
Eq. (62) to linearize the T? terms in Egs. (59) and (60).

4.2. Modified ECIMC and FSIMC equations

Following an analogous process to that described in Section 4.1, we can develop modified equations for
both the ECIMC and FSIMC methods. The modified equations for the ECIMC scheme are:

. At ..
Etoc(E—¢) ZEZE—FAt(}c(E— ) +O(A?); (78)
. ve A T ;
CveTe _C_(Ti - Te) + O-C(¢ _E) :thveTe —|—AtO’C(¢ _E) +O(At2)a (79)
Cie At .
vi (T T ) Qi:?CviTi_AtQi+O(At2); (80)
cve At BCue B )
—¢— Ti—T.)+oc(¢p—E ¢+ Atoe(¢p—E) — At Ti—T.)+At=0c(¢p—E)+O(At"). (81
= ST T 0c(d— B) =5 b Ate(d— ) = Mg O (1= 1)+ Mrgoc(p—E) +O(A). (81)
Similarly, the modified equations for the FSIMC scheme are:
. At .. e
£+ oe(E — ) = 5 E+ Atbe(E — §) — Atoch = (T~ T.) + O(AP); (82)
. Che A ) Cye (Cie
CyTe — . (T;—Te)+oc(p—E)= ECVCTe + Atée(¢p — E) —|—At4‘c2 <Cvi + 1) (T; —Te)
( T.) +O(A#); (83)
A .. .
Cufi+ (1 -7 =7’cviri—AzQi— ( ) )+ O(AR); (84)
1. C,. At1- Cye (Cre Cye
E(}ﬁ—T(Ti—TG)-l-O'C((,‘b—E) ﬁ¢+Atac(¢ E) (C )(T T)+Atacﬁ (T, -T.)
Cye
—Atg . ( i—Te)+At§oc(¢—E)+O(At2). (85)
The only difference between the SCIMC and FSIMC modified equations is in the following error term,
Cve Cve
Atacf > (T; = T.) — Atocfp—(T; — T.). (86)
T T
SCIMC FSIMC

Hence, this term is twice as large when using the FSIMC method. We shall examine its impact in Section 5.
At this point, one could inquire about variants of the FSIMC method when electron—ion conduction is not
required for a given problem. In that case, an alternative form of the FSIMC method could be derived that



T.M. Evans, J.D. Densmore | Journal of Computational Physics 225 (2007) 1695-1720 1707

splits the electron—ion coupling from the IMC in a single step. MEA analysis of this system shows that the
errors are identical to the ECIMC method except that the Azacf Cr“‘ (T; — T.) term is present in the alternate
FSIMC scheme. This term, as we shall show in Section 5, represents a source of unbounded error, and there-
fore, the ECIMC method will be the most accurate scheme when conduction is neglected.

5. MEA computational results

We can use the modified equations derived in Section 4 to estimate the errors that result from the various
linearization and splitting schemes that we employ in our IMC methods. The error terms are estimated by
solving the modified equations with fully resolved nonlinearities. In this study, Newton’s method is used to
generate nonlinear solutions to the modified equations.

To begin, we write the system of modified equations with first-order differencing,

E—-FE"
A ToeE— B =4, (872)
T.—T, Ci
Co g = (Mi=T) +oeldp—E) = &, (87b)
Ti—T! Cy B
Cyi At ‘L' (Tl Te) Qi - 537 (870)

with ¢ defined (see Egs. (77), (81), and (85))

Eo+ " + BAtC (T, — Te) + ﬁacAtE
1 4 focAt

The error terms, {¢;, &, &3, &}, are unique to the IMC method for which the modified equations are defined.
The first-order differencing scheme allows us to ignore the E, T, T;, and ¢ error terms because they are iden-
tical to the errors imposed by numerically solving the equations to first order. Additionally, we evaluate ¢ and
p to first order. Using these approximations, the error terms (&) for each IMC method are defined:

4 (58)

ECIMC:
0
& = ca—ﬁem — T)(E - ¢); (89a)
& = e (T~ (6~ E (39)
&= —AfQi; (89¢)
0o 1Cy, O 10
o= e (o= T = ) = 5 S 50 (T =TT, = T 4 5 5T oc(Te = T4 — E); (94)
SCIMC:
0o " A Cue : 90
& = e (Te = TO(E — §) — Moep 3= (T~ T.): (90a)
a n ve CVS
&= 3T (Te —T") (P — E)+At (CVi+1>(T T.) (T T.); (90b)
; Cvc Cvc
53 = _AtQi - At41.2 (Cvi + 1) (Ti - Te); (9OC)
a n A VC CVC 1
= g (1= TG~ B) 4 805 (G541 )T = T + Mtoch (T, - T)
1 Cy. Of . op . .
B T aT (TC_Te>(Ti_Te)+BaTe (Te_Te)(¢_E)’ (90d)
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FSIMC:
= et (T~ TO(E - ¢) — Mroch (T, — T 91a)
&= c(%(fe(Te ~ T (¢ —E) + AISTV; (ge + 1) (T; — T.) + Atocp (’;“ (T; — Te); (91b)
& = —A1Q; — A:ivg (g + 1> (T; — T.); (91c)
& = c%’c(n — T (¢ —E) + Ativj (g + 1> (T; — Te) + Atocp CT (T; — Te)
—% CT aafe (Te — T")(T; — T.) +% aafe oc(Te — T") (¢ — E). (91d)

These equations constitute the discrete forms of the modified equations for each IMC method defined for the
simplified system in Egs. (58a)—(58c).

Solving the modified equations should reproduce, minus high-order terms, the solutions obtained using the
appropriate split, linearized method. If modified equations with second-order, or higher, error terms are
required to reproduce the results from the IMC solutions, the method will not be first-order convergent.
For example, if we solve Egs. (87a)—(87c) with error terms defined by Eqs. (90a)—(90d) using a fully nonlinear
method, the solution should reproduce the results obtained by solving Egs. (65a)—(65¢).

5.1. Model problem

We consider a problem that starts with radiation, electrons, and ions at room temperature (293 K). We
apply a Gaussian-fitted source to the ions using

2
V21t

where € is a normalization constant and ¢, is the width of the source. The source is centered about 7.
The model problem has the following data:

€ =25.06628, t,=10ns, ¢ =10.0ns

0i(t) = p€ [GJ cm ™ ns™!], (92)

0y 1 Oo 200

O’—T—z cm, aTe:—T—27 gy =0.5
Cw =0.1p, Cy=0.05p [GJcm™> keV ']
7=0.1 ns

p=30gcm™’

The initial conditions are
Ti(0) = T.(0) = T,(0) = Ty = 293 °K = 2.52487 x 10> keV
E(0) = 5.57585 x 107*! GJ em™3
e.(0) = 7.57461 x 10°° GJ cm™®
ei(0) =3.78731 x 10°° GJ cm ™3
Second-order benchmark solutions for this problem are calculated using Crank—Nicolson differencing with
nonlinear Newton iteration and timesteps of 107 ns.
A comparison of results from each IMC method with the benchmark solution to the model problem is
shown in Fig. 1. The ECIMC method is the most accurate, followed by SCIMC. Using the MEA solutions

in Egs. (87)—(91) we can quantify the errors that hamper the accuracy of the SCIMC and FSIMC methods
relative to the ECIMC method.
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T (keV)
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At=0.01 ns

e

T.

i
. T ECIMC
. T,ECIMC
. T,ECIMC

T SCIMC
T, SCIMC
T, SCIMC

- T FSIMC

T, FSIMC
T, FSIMC

10 15 20
t (ns)

Fig. 1. IMC solutions to the model problem. The timestep is a constant 0.01 ns. The errors in each method as a function of timestep are

shown in Fig. 3.

5.2. MEA error calculations

Fig. 2 shows a comparison of the nonlinear, first-order solution of the SCIMC modified equations in (87a)—
(87¢) and (90a)—(90d) with the SCIMC solution from Egs. (65a)—(65¢) for the model problem. The modified
equations reproduce the SCIMC solution. For each IMC method the first-order MEA solution adequately
represents the IMC solution. This indicates that we can expect first-order convergence for each method. Plot-

25

20

T (keV)

10

At=0.01 ns

—— T,SCIMC E
—— T,SCIMC
T,SCIMC —

= T, SCIMC Modified Equations

= T, SCIMC Modified Equations

T, SCIMC Modified Equations

10 15 20
t (ns)

Fig. 2. Comparison of SCIMC solution with corresponding solution to the SCIMC modified equations. The modified equation solution,
evaluated non-linearly to first-order, replicates the IMC solution.
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ting the L., norms for electron and ion energies for this problem in Fig. 3, we see that the methods do indeed
converge to first-order. If the methods did not show first-order convergence, we would have to include higher-
order terms in the modified equations to represent the additional errors. Also, the results in Fig. 3 show that
the ECIMC method is approximately ten times more accurate than the SCIMC and FSIMC methods for
At = 0.01 ns when calculating the electron energy.

We can now use MEA to calculate the errors for each method. Fig. 4 shows the absolute values of the error
terms for the model problem (Section 5.1) for each IMC method. Analyzing the error terms in Egs. (89)—(91)
and the results shown in Fig. 4, we see that the SCIMC and FSIMC methods have &, ~ &,;. Furthermore, the
ECIMC method has very small contributions in the & and &4 terms. Labeling the error terms for the SCIMC
method as follows

a 101 E T T TTTTT ‘ T T TTTTT T T TTTTT T T TTTT \. T T TTTT g
C ® ECIMC ]
- ] SCIMC .
. FSIMC
10" —
g 10 =
- 3 3
© o ]
_8 - .
~ i 7
§10°E E
10° =
10,4 5 Il L1111l " Il L1111l ‘ S Il L1111l ‘ ) Il L1111l ‘ I Il L1111l 0
100 10° 107 107 107 10
At (ns)
b 10] E T T TTTTT ‘ T T TTTTT T T TTTTT T T TTTTT T T TTTT $:—
r ® ECIMC ]
L = SCIMC i
0 FSIMC
100 —
g 10 =
- = 3
St ]
_g B ]
= L i
& 107 = E
107 =
- 1 L1111l ‘ 1 L1111l ‘ Il L1111l ‘ Il L1111l ‘ Il L1111l
10*
107 10 107 102 10" 10°

At (ns)

Fig. 3. L, error norms for electron and ion energies. The continuous lines are log-log fits to the data. As indicated by MEA, the methods
show first order convergence: (a) electron energy (b) ion energy.
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At=0.01 ns
T T ‘
&,&, FSIMC ——

. &, ECIMC
—— &,ECIMC
—— &,ECIMC
— &,ECIMC

&, SCIMC
€,SCIMC |

. &,5CIMC

- &,SCIMC

€, FSIMC
—— &, FSIMC
€, FSIMC

- &, FSIMC

£,&, SCIMC

|£| (GJ cm? nsh)

i
T

0.1

0.01
5

Fig. 4. Error terms generated by MEA for the model problem.

CVC CVC
At4.L.2 (Cvi + 1) (Tl - Te)7 (A)
Atacf Cre (T; —T.) (B)

2 i e)s

1 Cy O .

B a_Te(Te_Te)(T' Te), (©)
At=0.1ns At=0.01 ns
a 40 T ‘ T b 6 T ‘ T ‘

Components of Error (GJ cm™ ns™!)
Components of Error (GJ cm™ ns™!)

0 5 10 15 20 0 5 10 15 20
t (ns) t (ns)

Fig. 5. Components of error for the SCIMC method in the model problem. The 4 and B components dominate the error; however, as the
timestep increases the other terms contribute: (a) Az = 0.1 ns; (b) Az =0.01 ns.
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107
10° 10 107 107 10" 10°
At (ns)
b 102 E T T T TTTT T T TTTTT T T TTTTT T T TTTTT T T T TTT E
10'E ® ECIMC E
E = SCIMC 3
r FSIMC ]
10 -
= N ]
= 10'E .
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Fig. 6. L, error norms for electron and ion energies with oo = 100. The continuous lines are log-log fits to the data. Because the B term is
unbounded, the SCIMC and FSIMC methods can lose first-order convergence when they do not respect the timescales required by the B
error term: (a) electron energy; (b) ion energy.

1 op

Ba—TeGC(Te_T:)((b_E)’ (D)
Car (T = T2) (8~ E), (E)

we conclude that the T, and ¢ equations are dominated by the A4 and B error terms. Fig. 5 shows the mag-
nitude of the error terms in Egs. (90a)—-(90d) for Az =0.1 and At = 0.01 ns. Clearly the error is dominated
by the 4 and B terms. These terms do not exist in the ECIMC method, and the B term is twice as large in
the FSIMC method. Because the B term is the largest source of error it accounts for the improved accuracy
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in the ECIMC and SCIMC methods. Error terms C, D, and E contain time-derivatives of ¢ and f. These terms
become significant when the opacity and temperature are rapidly varying. In the model problem they do not

significantly impact the total error.

Error terms C, D, and E will generally be small because of the following limits,

lim (¢ — E) = 0,

III%(TI — Tc) =0.

At=0.01 ns

_ (Glem)

1 Ege ]

0.001

10 100

6 (6=0 T cmh)
o o e

At=0.01 ns

0.1
1
bt
£
Q
>
<)
_8
—~
)
=
- E — ECIMC
- — SCIMC
= — FSIMC
0.001

0.1

10 100

6 (6=0 T?cm!)
o 3 e

Fig. 7. L., error norms for electron and ion energies as a function of go. Norms are calculated over 0-20 ns problem time: (a) electron

energy; (b) ion energy.
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When the problem becomes optically thick, error terms D and E vanish. Similarly, when the electrons and
ions are tightly coupled C goes to zero. Error term B is not bounded in this manner. This term is propor-
tional to ¢, and there is no corresponding radiation—electron coupling term to limit the error when the prob-
lem becomes thick. Thus, B represents a source of unbounded error when the electrons and ions are out of
equilibrium.

In Fig. 3 we demonstrated that first-order convergence is obtained for all three IMC methods up to time-
steps of 0.1 ns. However, the B error term that is present in the SCIMC and FSIMC methods is an unbounded

C /t(GJ cm™keV' ns™)

300 30 3 0.3
a !F \ \ ]
2
Q
=
&)
s
—
o
2
0.01 Il 1111 ‘ Il 1111 ‘ Il 1111
0.001 0.01 0.1 1
T (ns)
C /t(GJ cm? keV! ns)
300 30 3 0.3
b 'F \ \ ]
- — ECIMC 8
L — SCIMC 4
i FSIMC |
3 L E
Q
2
T 01| .
— B ]
S L ]
= L il
0.01 Il 1111 ‘ Il 1111 ‘ Il 1111
0.001 0.01 0.1 1

T (ns)

Fig. 8. L. error norms for electron and ion energies as a function of t and (Cye/7). Here, Cye = 0.3 GJ cm > keV~". These parameter
studies were run with Az =0.01 ns. Norms are calculated over 0-20 ns problem time: (a) electron energy; (b) ion energy.
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function of ¢. In Fig. 6 L, error norms are shown for the model problem with ¢, = 100. Here we see that the
SCIMC and FSIMC methods are no longer first order, and second-order error terms are required in the mod-
ified equations in order to match the discrete solutions. When calculating the ion energy, SCIMC begins to
lose first-order convergence around Ar=10"%ns, and FSIMC loses first-order convergence around
At = 5x 107 ns. These methods fail first-order convergence because the timescale represented by the coeffi-
cient in the B error term is no longer resolved. Since B o< ¢ the timesteps must be small in thick problems
to achieve first-order convergence using the SCIMC and FSIMC methods. Conversely, when the problem
is very thick the D and E error terms are zero because (¢p — E) = 0. Therefore the ECIMC method maintains
first-order convergence independent of a.

6. Computational parameter studies

Having determined that terms 4 and B are the principal sources of error that separate the three IMC meth-
ods, we can look at the variation of these terms with problem specification. Clearly, as (4,B) — 0 the three
methods will yield the same results. Also, all of the error terms (with the exception of the Q; term) are propor-
tional to the separation between electrons and ions, (7; — T;), or the separation between electrons and radi-
ation, (¢ — E). We will analyze these effects using the model problem from Section 5.1 as a baseline.

Additionally, our MEA analysis only considered constant t and C,.. We made this simplification because
the analysis becomes hopelessly complex when including nonlinear C,.. Nonetheless, we must consider the
effects of nonlinear C,. and t on each method. These effects are examined in Section 6.4.

6.1. Opacity variation

As discussed in Section 5.2, error term B is proportional to g; thus, we can expect that ECIMC will perform
better than SCIMC and FSIMC as the problem becomes optically thick. Fig. 7 shows L., error norms for each
IMC method applied to the model problem with varying gy. As expected, ECIMC performs increasingly better
than the other methods as the problem gets thicker. For very thick problems, oy 2 25, the electron and radi-
ation temperatures do not separate due to the limiting condition in Eq. (93). When this happens the error
terms that are proportional to (¢ — E) vanish. The SCIMC and FSIMC errors will be dominated by the A4
and B terms, where A is roughly constant and B is proportional to a.

As the problem becomes thin the radiation and electrons can go out of equilibrium because the equilibra-
tion time is (o¢) " '. In these cases, the error terms that are proportional to (¢ — E) will dominate. These terms
are present in all three IMC methods.

6.2. Electron—ion coupling variation

Error terms A, B, and C are proportional to (Cy./1), so we need to analyze the effect of this parameter on
the accuracy of the methods. Interpretation of the results is difficult because error terms that are proportional
to (7T; — T,) are inversely proportional to 7. Thus, the effect of 7 is related to the rate at which (7; — 7,) — 0
versus the magnitude of (Cy/7).

Fig. 8 shows the L., norms for electron and ion energies as a function of t and (C,./t) for all three IMC
methods. As indicated in the figure, the ECIMC method performs better than the other methods; however, we
cannot make easy characterizations about the affect of this parameter because of the conflict between the ion—
electron separation and the magnitude of 7. One observation is that the electron energy errors are significantly
greater for the SCIMC and FSIMC methods at large t, whereas the ion energy errors are nearly the same for
the ECIMC and SCIMC methods at large .

6.3. Ion source variation
The model problem uses a fitted Gaussian with a peak of 30.0 GJ cm > ns™'. The magnitude of the ion

source (Q;) will strongly affect the ion—electron separation as shown in Table 1. Fig. 9 shows the L., norms
for electron and ion energies as a function of the peak ion source strength. When the source is small there
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Table 1

Maximum ion-electron temperature difference for varying peak source strengths

Opeak (GTem ™ ns™) max |T; — Te| (keV)
0.3 0.068
3.0 0.941

15.0 4.938

30.0 9.931

At=0.01 ns
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Fig. 9. L., error norms for electron and ion energies as a function of the peak Gaussian ion source strength. Norms are calculated over
0-20 ns problem time: (a) electron energy; (b) ion energy.
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is very little separation in the ion and electron temperatures, and all of the methods will be accurate. As the
source strength increases the ions and electrons will go out of equilibrium causing the 4 and B error compo-
nents in the SCIMC and FSIMC methods to grow. Thus, the ECIMC method performs better in problems
with sources that cause the electrons and ions to separate.

6.4. Nonlinear EOS

Thus far we have only considered linear variations in EOS and material data, namely C,., Cy;, and 7. We
must consider the effect of nonlinear C,. on the performance of each method. Because the MEA only consid-
ered constant EOS we will perform this analysis heuristically with a variation of the model problem that
admits Cye o< T, [10]. The problem we shall consider has the following specification:
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Fig. 10. L., error norms for electron and ion energies. Results are shown for solving split III of the SCIMC method using nonlinear
Newton iteration and linearization as shown in Eqgs. (65d) and (65¢): (a) electron energy; (b) ion energy.
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Fig. 11. L, error norms for electron and ion energies as a function of ¢ with nonlinear C,.. SCIMC solutions are generated with nonlinear
Newton iteration for split III: (a) electron energy; (b) ion energy.
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All other initial conditions are identical to the model problem. The model for 7 is given in Eq. (5). For this
problem we set 1 = 15. The number density of electrons and ions are equivalent, n, = n; =n, and n ~ 10'®
cm* for dense, hot plasmas.

Fig. 10 shows L, error norms for electron and ion energy versus timestep for each IMC method. Here, we
see that the SCIMC method performs best followed by the FSIMC method for calculating the electron energy.
All of the methods are equally accurate when calculating the ion energy. There is a straightforward reason for
this result. Because the SCIMC and FSIMC methods have more electron-energy splits than the ECIMC
method, the temperature variation on internal energy will be more accurately represented over the timestep.
For example, in ECIMC the coupling effect on internal energy is done with the beginning timestep tempera-
ture. In SCIMC and FSIMC the temperature-variation in the EOS is applied multiple times during the solve.
The ECIMC scheme only integrates Cy. once per timestep, and therefore, the integration error will be greater
for this method when C,. has strong dependence on T,. We also note that solving split III in the SCIMC
method with a fully nonlinear method (Newton iteration) yields nearly identical results to the linearized solve.

The EOS integration error is small compared to the error terms resulting from the splits in the SCIMC and
FSIMC methods. The problem we just considered is very thin, ¢ = 0.172. If this same problem is run with
varying o the errors resulting from the additional splits in the SCIMC and FSIMC methods quickly over-
whelm the EOS integration error as ¢ — oo. The results for this problem are illustrated in Fig. 11. As the prob-
lem becomes thick the ECIMC scheme gives the most accurate results.

7. Conclusions

We have analyzed three IMC methods for performing 3T transport calculations. Using MEA we have
shown that, for the simplified system in Egs. (58a)—(58c), the ECIMC method has the smallest number of error
terms. Also, in Section 6 we have demonstrated that ECIMC is consistently the most accurate of the three
methods. However, in thin problems with small ion—electron temperature separation, the SCIMC method
is competitive. We will continue to investigate these problems in a future paper. We may find that the SCIMC
method has advantages in thin problems that has large contributions from electron or ion conduction, which
we have not yet analyzed.

In problems where the effects of conduction can be ignored, the ECIMC method is the obvious choice. The
only other realistic competitor would be a variant of the FSIMC method in which the electron—ion coupling
was calculated in a single solve. However, MEA shows that the unbounded error term B is still present in this
scheme. When conduction can be neglected, ECIMC is the most accurate method.

All of the IMC methods presented in this work are first-order accurate in time. However, the SCIMC and
FSIMC methods have more significant timestep constraints due to the presence of unbounded error terms that
result from the splitting. These terms are proportional to ¢; thus, we can expect that the timestep constraints
will be more severe in the SCIMC and FSIMC methods in thick problems. The ECIMC error terms are
bounded so it maintains first-order convergence as long as the dynamic timescale of the problem is respected.

The first-order results obtained in this work resulted from deterministic solutions of the Monte Carlo solu-
tions. In practical Monte Carlo simulations statistical errors often overwhelm discretization errors. This fact
has strong implications for the possibility of developing second-order Monte Carlo methods. We expect that
the statistical variance in the solution will prevent second-order convergence. In addition, second-order meth-
ods that preserve positive unknowns require iteration. Because of efficiency constraints and statistical noise,
iterative methods are not feasible in real Monte Carlo calculations. Second-order methods that do not require
iteration exist; for example, Rosenbrock schemes give second-order convergence without iteration [11]. How-
ever, these methods are based on an estimate of the residual that can be negative. Negative weights are best
avoided in Monte Carlo simulations because they increase the variance of the solution. Second-order Monte
Carlo methods are an area of future research, but the state-of-the-art is still first order.

While we have not performed detailed performance analysis, we can state that the ECIMC method is the
least expensive scheme from the standpoint of number-of-operations. Both the SCIMC and FSIMC methods
require two inversions of the parabolic conduction operator. SCIMC requires one sweep of the mesh to solve
split III. FSIMC requires this sweep plus an additional sweep to solve split Ib. When Newton’s method, or
another nonlinear iteration scheme, is used to solve these splits, multiple iterations per cell will be required
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on the block-diagonal matrix that constitutes split IIl. Monte Carlo performance analysis on these methods
will be the topic of a future paper.

Finally, we have not analyzed the effects that conduction has on the proposed IMC methods. The splittings
proposed in this paper impose error from the treatment of conduction. Nonetheless, these additional errors do
not invalidate the analysis of errors resulting from the electron—ion coupling splits and linearization of the
radiation equation. Therefore, we feel justified in analyzing the errors in the linearization and splitting schemes
that we have proposed in this paper while neglecting conduction. We will investigate problems with conduc-
tion using fully implemented Monte Carlo solvers in a future study.

The next stage of this work will integrate the methods presented here in a Monte Carlo code. We will inves-
tigate the effect that the conduction treatment imposes on each method. We will also analyze frequency-depen-
dence, which has been neglected in this analysis.
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